In this study investigated a facile method to prepare modified hydrophilic polypropylene-grafted-maleic anhydride/polyamide 6 (PP-grafted-MAH/PA6), poly(methyl methacrylate) (PMMA) substrate and polyvinyl alcohol-chitosan (PVA-Chitosan) nanofiber membranes for selective urea and excess water flux under various conditions. Fiber diameters and pore sizes were controlled via electrodeposition spinning. The prepared membranes were applied to blood-dialysis membrane, such and a high water and urea flux of 150-250 mg/g membranes were found under the defined optimum conditions. Smaller fiber diameter with a mesopore density increased the efficiency of urea and water flux in blood. In the as-prepared smart membranes showed high flux capacity and selectivity, and promising demonstration.