Salined water electrolysis is one of representative commercial processes to produce valued chemicals such as chlorine, hydrogen. The most important issue in the electrolysis is to reduce energy consumption. A plausible solution is to accelerate Na+ion transport through cation exchange membranes and to reduce interfacial resistance with electrodes. The conventional membrane materials are based on PFSAs such as Nafion®. In spite of their robust chemical resistance, there are several critical demerits including expensive production cost and difficult tuning capability. For this, a SPAES random copolymer-silica nanocomposite is used as a membrane matrix with a high ionic conductivity and radiation-grafted with a highly sulfonated poly(strylene) to provide a branched polymer architecture for improved interfacial characteristics.