CO2 Capture Membranes Based on Graft Copolymers
The graft copolymer consisting of poly(vinyl chloride)-graft-poly(oxyethylene methacrylate) (PVC-g-POEM) was synthesized via atom transfer radical polymerization (ATRP) with a copper/ligand complex that functions as a reaction catalyst. Mesoporous perovskite with a high porosity and interfacial properties were synthesized via a solvothermal reaction using PVC-g-POEM as a structure-directing agent. A PVC-g-POEM graft copolymer with a worm-like morphology was utilized as a soft matrix to prepare a mixed matrix membrane (MMM) with mesoporous perovskite through a solution-casting method. The MMM with MgTiO3 25wt% exhibited a CO2 permeability improvement of 140% up to 138.7 Barrer without a large loss of CO2/N2 selectivity. Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT-PSS) is a widely used conductive polymer in various electronic devices. We also reported the first use of PEDOT-PSS to enhance CO2 capture performance of all-polymeric membranes.