논문 상세보기

플라즈마 강화 원자층 증착법에 의한 TaNx 박막의 전기 전도도 조절 KCI 등재 SCOPUS

Electrical Conductivity Modulation in TaNx Films Grown by Plasma Enhanced Atomic Layer Deposition

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/346240
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
한국재료학회지 (Korean Journal of Materials Research)
한국재료학회 (Materials Research Society Of Korea)
초록

TaNx film is grown by plasma enhanced atomic layer deposition (PEALD) using t-butylimido tris(dimethylamido) tantalum as a metalorganic source with various reactive gas species, such as N2+H2 mixed gas, NH3, and H2. Although the pulse sequence and duration are the same, aspects of the film growth rate, microstructure, crystallinity, and electrical resistivity are quite different according to the reactive gas. Crystallized and relatively conductive film with a higher growth rate is acquired using NH3 as a reactive gas while amorphous and resistive film with a lower growth rate is achieved using N2+H2 mixed gas. To examine the relationship between the chemical properties and resistivity of the film, X-ray photoelectron spectroscopy (XPS) is conducted on the ALD-grown TaNx film with N2+H2 mixed gas, NH3, and H2. For a comparison, reactive sputter-grown TaNx film with N2 is also studied. The results reveal that ALD-grown TaNx films with NH3 and H2 include a metallic Ta-N bond, which results in the film’s higher conductivity. Meanwhile, ALD-grown TaNx film with a N2+H2 mixed gas or sputtergrown TaNx film with N2 gas mainly contains a semiconducting Ta3N5 bond. Such a different portion of Ta-N and Ta3N5 bond determins the resistivity of the film. Reaction mechanisms are considered by means of the chemistry of the Ta precursor and reactive gas species.

목차
Abstract
 1. 서 론
 2. 실험 방법
 3. 결과 및 고찰
 4. 결 론
 References
저자
  • 류성연(서울과학기술대학교 신소재공학과) | Sung Yeon Ryu (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 최병준(서울과학기술대학교 신소재공학과) | Byung Joon Choi (Department of Materials Science and Engineering, Seoul National University of Science and Technology) Corresponding author