논문 상세보기

러프 집합을 이용한 의사결정나무의 노드 선택 방법

Approach to selection of nodes of decision tree using Rough Set

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/349865
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
한국산업경영시스템학회 (Society of Korea Industrial and Systems Engineering)
초록

Classification is an important area in a data mining. There are various ways in classification methodologies : the decision tree and the neural network, etc. Recently, Rough set theory has been presented as a method for classification. Rough set theory is a new approach in decision making in the presence of uncertainty and vagueness. In the process of constructing the tree, appropriate attributes have to be selected as nodes of the tree. In this paper, we present a new approach to selection of attributes for the construction of decision tree using the Rough set theory. The suggested method makes more simple classification rules in the decision tree and reduces the volume of the data to be treated.

목차
Abstract
 1. 서 론
  1.1 연구 배경
  1.2 연구 목적
 2. 기존 연구 고찰
  2.1 의사결정나무
  2.2 러프 집합(rough set) 이론
 3. 본 연구에서 제안하는 RSC알고리즘
  3.1 비일관적 데이터의 확률적 처리
  3.2 RSC알고리즘
  3.2 예제
  3.3 기존 알고리즘[9]과 비교
 4. 결 론
 참고 문헌
저자
  • 유재진(한양대학교 산업공학과)
  • 김재련(한양대학교 산업공학과)