논문 상세보기

효율적 데이터 마이닝을 위한 데이터 범주화에 관한 방법론

A Methodology on Classification of Data for Effective Data Mining

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/350694
구독 기관 인증 시 무료 이용이 가능합니다. 3,000원
한국산업경영시스템학회 (Society of Korea Industrial and Systems Engineering)
초록

In general, data mining has iterative processes with the following five steps: Data Selection, Cleansing, Transformation, Mining, Interpretation. Among these steps, steps of data selection and cleansing are performed to classify data. There are two types of data, continuous data and discrete data. Discrete data has a classified structure and it is easy to obtain rules from data. However, there are no general rules for classified method of data in continuous data. So, the result of data analysis will be differed from the classified method of data in continuous data. This research presents a methodology that can obtain the rules from data and classify data according to situations in DBMS (Data Base Management Systems).

목차
Abstract
 1. 서론
 2. 데이터의 종류 및 데이터 마이닝 기법
  2.1 데이터의 형태
  2.2 데이터 마이닝의 발전
  2.3 데이터 마이닝 기법
  2.4 데이터 규칙 추출 방법
  2.5 DBMS에서 데이터 규칙 생성방법
 3. 결론 및 추후 연구
 4. 감사의 글
 참고 문헌
저자
  • 임영문(강릉대학교 산업시스템공학과)
  • 곽준구(강릉대학교 산업시스템공학과)