In this study, we compared the MZVI (Microscale Zero-Valent Iron) and NZVI (Nanoscale Zero-Valent Iron) for reactivity and mobility in a column to reduce nitrate, which is a major pollutant in Korea, and investigated the effect of operational parameters on the NZVI filled column. For the comparison of MZVI and NZVI, samples were collected for 990 minutes using fractionator in the similar operation conditions (MZVI 10g, NZVI 2g). The nitrate reduction efficiency of NZVI was about 5 times higher than that of MZVI, which was about 7.45% and 38.75% when using MZVI and NZVI, respectively. In the mobility experiment, the MZVI descended due to gravity while NZVI moved up with water flow due to its small size. Furthermore, the optimum condition of NZVI filled column was determined by changing the flow rate and pH. The amount of Fe ions was increased as the pH of the nitrate solution was lowered, and the nitrate removal rate was similar due to the higher yield of hydroxyl groups. The removal rate of nitrate nitrogen was stable while flow rate was increased from 0.5 mL/min to 2.0 mL/min (empty bed contact time: 2.26 min to 0.57 min). NZVI has a high reduction rate of nitrate, but it also has a high mobility, so both of reactivity and mobility need to be considered when NZVI is applied for drinking water treatment.