논문 상세보기

상전이법을 이용한 P(VDF-co-HFP) 분리막 구조제어 KCI 등재

Controlling the Morphology of Polyvinylidene-co-hexafluoropropylene (PVDF-co-HFP) Membranes Via Phase Inversion Method

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/351884
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
멤브레인 (Membrane Journal)
한국막학회 (The Membrane Society Of Korea)
초록

본 연구에서는 상전이법을 이용하여 P(VDF-co-HFP) 분리막의 구조를 조절하였다. Macrovoid 없는 구조를 얻기 위하여 다양한 조건에서 비용매유도상전이(NIPS) 공법으로 분리막을 제막하였으나 고분자의 낮은 결정화 속도로 인해 macrovoid가 생성된다는 것을 관측하였다. 이를 극복하기 위해 증발유도상전이법(EIPS)과 증기유도상전이법(VIPS)을 도입하였으 며 NIPS공법과 함께 제막되었을 때 이상적인 구조를 얻을 수 있다는 것을 확인하였다.

In this work, the morphology of polyvinylidene-co-hexafluoropropylene (PVDF-co-HFP) membranes were systemically investigated using phase inversion technique, to target membrane contactor applications. As the presence of macrovoids degrade the mechanical integrity of the membranes and jeopardize the long-term stability of membrane contactor processes (e.g. wetting), a wide range of dope compositions and casting conditions was studied to eliminate the undesired macrovoids. The type of solvent had significant effect on the membrane morphology, and the observed morphology were correlated to the physical properties of the solvent and solvent-polymer interactions. In addition, to fabricate macrovoid-free structure, the effects of different coagulation temperatures, inclusion of additives, and addition of nonsolvents were investigated. Due to the slow crystallization rate of P(VDF-co-HFP) polymer, it was found that obtaining porous membrane without macrovoids is difficult using only nonsolvent-induced phase separation method (NIPS). However, combined other phase inversion methods such as evaporation-induced phase separation (EIPS) and vapor-induced phase separation (VIPS), the desired membrane morphology can be obtained without any macrovoids.

목차
요 약
 Abstract
 1. Introduction
 2. Experimental
  2.1. Materials
  2.2. Membrane Fabrication and Characterization
 3. Results and Discussion
 4. Conclusion
 Reference
저자
  • 송예진(분리막연구센터 화학소재연구본부 한국화학연구원) | Ye Jin Song (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT))
  • 김종후(분리막연구센터 화학소재연구본부 한국화학연구원) | Jong Hoo Kim (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT))
  • 김예솜(분리막연구센터 화학소재연구본부 한국화학연구원) | Ye Som Kim (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT))
  • 김상득(분리막연구센터 화학소재연구본부 한국화학연구원) | Sang Deuk Kim (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT))
  • 조영훈(분리막연구센터 화학소재연구본부 한국화학연구원) | Young Hoon Cho (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT))
  • 박호식(분리막연구센터 화학소재연구본부 한국화학연구원) | Ho Sik Park (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT))
  • 남승은(분리막연구센터 화학소재연구본부 한국화학연구원) | Seung Eun Nam (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT))
  • 박유인(분리막연구센터 화학소재연구본부 한국화학연구원) | You In Park (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT))
  • 손은호(계면재료화학공정연구센터 화학소재연구본부 한국화학연구원) | Eun Ho Son (Interface Materials and Chemical Engineering Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT))
  • 김 정(분리막연구센터 화학소재연구본부 한국화학연구원) | Jeong F. Kim (Membrane Research Center, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT)) Corresponding author