Analytical Study for the Electrokinetic Consolidation of Dredged Sediments
More than 45 million tons of marine clay is dredged in the western and southern sea every year in Korea. Dredged soils, which are relatively easily supplied, have been known as an economical fill material for the construction of airports, ports, and industrial land. However, dredged soils can no longer be used as a construction material because they contain various types of heavy metals and organic pollutants. If an electric field is applied to dredged sediments, various phenomena such as electrophoresis, electro-osmosis, electro-migration, electrolysis occur because the surface of marine clay is negatively charged. The interpretation of sedimentation and self-weight consolidation is very important because this behavior is closely related to the stabilization of dredged sediments and the landfilling period. The analytical solution for the calculation of excess pore-water pressure is obtained by determining the initial and boundary conditions. Then, the surface settlement and density profiles are predicted by using this analytical solution. The analytical solution from Esrig’s one-dimensional electrokinetic consolidation theory and this study’s numerical simulation with mass conservation more easily predicted the electrically induced consolidation behavior of dredged sediments than the non-linear finite strain consolidation theory.