논문 상세보기

방대한 데이터 집합으로부터 데이터의 패턴인식을 위한 모델링

Modeling for Pattern Recognition of Data from Huge Dataset

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/354203
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
한국산업경영시스템학회 (Society of Korea Industrial and Systems Engineering)
초록

To understand the pattern recognition from dataset, a study should be started from the decomposition process of context into a collection of data pieces because the context may infer different words or information. Many researchers have been focused on finding an effective methodology for data storage, retrieval, representation, and discovery. As a similar endeavor, this paper proposes a new modeling method using group theory and situation theory. This paper provides how to construct a semi-group as a modeling method for pattern recognition from huge dataset. This process of construction of semi‐groups can be used as a retrieval tool for the decomposed information if necessary.

목차
Abstract
 1. 서 론
 2. 군이론 (Group Theory)
  2.1 Abelian Semi-군
  2.2 Semi-군 Table
  2.3 Subsemi-군
 3. 상황이론 (Situation Theory)
 4. 모델링 방법
  4.1 Hasse Diagram
  4.2 Hasse Diagram 예제
  4.3 Abelian Pattern Semi군
  4.4 Abelian Pattern Semi군의 예
 5. Conclusion
 References
저자
  • 임영문(강릉대학교 산업시스템공학과)
  • 유창현(강릉대학교 산업시스템공학과)