본 연구에서는 인명구조활동을 지원하기 위한 피난동선예측 알고리즘 개발의 첫 단계로 피난동선예측 알고리즘의 개념을 정립 하고 그 타당성을 수치적으로 명확히 제시하였다. 제안하는 알고리즘은 평상시 선박내 모니터링 시스템으로부터 지속적으로 승객이동 데이터를 취득, 분석, 정형화하고, 재난발생시 이 데이터와 예측 툴을 활용해 도출한 승선자의 피난동선예측 정보를 구조자에게 제공하여 인명피해를 최소화시키는 프로세스로 요약할 수 있다. 피난훈련을 통해 피난특성 데이터를 취득하였고 이를 기존 인명피난예측 툴에 입력하여 피난특성을 예측한 결과, 예측 툴의 구조적 원인으로 인해 가시거리가 충분히 확보되고 피난경로를 충분히 숙지한 상황에서의 피난 시나리오(SN1)에서만 신뢰할 만한 예측결과가 도출되었다. 본 연구에서 제안하는 알고리즘의 타당성을 확인하기 위해 타 분야의 예측툴을 사용하여 피난특성을 예측한 결과, 제안 알고리즘이 구현될 경우 평균피난시간예측값과 피난동선(지점경유)예측값이 각각 0.6 ~ 6.9%, 0.6 ~ 3.6% 범위의 오차에서 실측값과 매우 유사한 경향을 보였다. 향후 선내 모니터링 데이터를 분석하고 이를 활용한 예측성능이 우수한 피난동선예측 알고리즘을 개발할 계획이다.
In this study, an algorithm to predict evacuation routes in support of shipboard lifesaving activities is presented. As the first step of algorithm development, the feasibility and necessity of an evacuation route prediction algorithm are shown numerically. The proposed algorithm can be explained in brief as follows. This system continuously obtains and analyzes passenger movement data from the ship's monitoring system during non-disaster conditions. In case of a disaster, evacuation route prediction information is derived using the previously acquired data and a prediction tool, with the results provided to rescuers to minimize casualties. In this study, evacuation-related data obtained through fire evacuation trials was filtered and analyzed using a statistical method. In a simulation using the conventional evacuation prediction tool, it was found that reliable prediction results were obtained only in the SN1 trial because of the conceptual and structural nature of the tool itself. In order to verify the validity of the algorithm proposed in this study, an industrial engineering tool was adapted for evacuation characteristics prediction. When the proposed algorithm was implemented, the predicted values for average evacuation time and route were very similar to the measured values with error ranges of 0.6-6.9 % and 0.6-3.6 %, respectively. In the future, development of a high-performance evacuation route prediction algorithm is planned based on shipboard data monitoring and analysis.