Analyzing the observational data of volcanic activities around the northern part of Korean peninsula, the odds of volcano eruption increases continuously. For example, the cumulative seismic moment and frequence observed near Mt. Baekdu show a sudden increased values. In this study, predicting the diffusion of volcanic ash for two cases were carried out by using interactive realtime simulator, which was developed during last 2 years as a research and development project. The first case is Sakurajima volcano (VEI=3) erupted in August 2013. The second case is assumed as the volcanic eruption at Mt. Baekdu (VEI=7) under landing circumstance of typhoon Maemi (August 2003) in Korean peninsula. The synoptic condition and ash diffusion for the two cases were simulated by WRF(Weather Research and Forecast) model and Lagrangian dispersion model, respectively. Comparing the simulated result of the first case (i.e., Sakurajima volcano) with satellite image, the diffusion pattern show acceptable result. The interactive realtime simulator can be available to support decision making under volcanic disaster around East Asia by predicting several days of ash dispersion within several minutes with ordinary desktop personal computer.