The present study aims to evaluate the characteristics of atmospheric polycyclic aromatic hydrocarbons (PAHs) pollution in roadside and residential areas of two Korean metropolitan cities (Seoul and Incheon) and a background area (Seokmolee). This purpose was established by analyzing temporal and spacial concentration distribution of total and 7 individual PAHs, which were extracted from ambient particulate matters, and by utilizing a multivariate statistical method (principal component analysis, PCA) for the qualitative determination of potential PAH sources. Target PAHs included benzo(a)anthracene (BaA), benzo(a)pyrene (BaP), benzo(b)fluoranthene (BbF), benzo(k)fluoranthene (BkF), chrysene (Chr), dibenzo(a,h)anthracene (DahA), and indeno(1,2,3-cd)pyrene (IcdP). For all surveyed sites, the concentrations of total PAHs were higher in winter season than in other seasons. However, the concentrations of individual PAHs varied with surveyed sites. In both residential and roadside sites of Seoul and Incheon, BbF revealed the highest atmospheric levels. For all 7 target PAHs, the ambient concentrations were higher in Seoul and Incheon than in a background area (Seokmolee). In both residential and roadside areas, the concentrations of 4 target PAHs (BaA, BbF, BkF, DahA) were higher in Incheon than in Seoul. However, both the residential and roadside Chr concentrations were comparable in Seoul and Incheon. In addition, the residential IcdP concentrations were higher in Incheon than in Seoul, whereas the roadside concentrations were higher in Seoul. The roadside and residential BaP concentrations exhibited the reverse result to the IcdP concentrations. An PCA analysis suggested that atmospheric PAHs in both residential and roadside areas would be due to combined effects of several potential sources such as gasoline- and diesel-fueled vehicles, coal/oil combustion, and waste incineration.