논문 상세보기

원소-도핑 광촉매를 활용한 저농도 황화 이메틸 및 이황화 이메틸의 제어 KCI 등재

Control of Low-Level Dimethyl Sulfide and Dimethyl Disulfide by Applying Element-Doped Photocatalysts

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/360174
서비스가 종료되어 열람이 제한될 수 있습니다.
한국환경과학회지 (Journal of Environmental Science International)
한국환경과학회 (The Korean Environmental Sciences Society)
초록

This study evaluated the applicability of visible-light-driven N- and S-doped titanium dioxide(TiO2) for the control of low-level dimethyl sulfide(DMS) and dimethyl disulfide(DMDS). In addition, a photocatalytic unit(PU)-adsorption hybrid was evaluated in order to examine the removal of DMS and DMDS which exited the PU and a gaseous photocatalytic byproduct(SO2) which was generated during the photocatalytic processes. Fourier-Tranform-Infrared(FTIR) spectrum exhibited different surface characteristics among the three-types of catalysts. For the N- and S-doped TiO2 powders, a shift of the absorbance spectrum towards the visible-light region was observed. The absorption edge for both the N- and S-doped TiO2 was shifted to λ 720 nm. The N-doped TiO2 was superior to the S-doped TiO2 in regards to DMS degradation. Under low input concentration(IC) conditions(0.039 and 0.027 ppm for DMS and DMDS, respectively), the N-doped TiO2 revealed a high DMS removal efficiency(above 95%), but a gradual decreasing removal efficiency under high IC conditions(7.8 and 5.4 ppm for DMS and DMDS, respectively). Although the hybrid system exhibited a superior characteristic to PU alone regarding the removal efficiencies of both DMS and DMDS, this capability decreased during the course of a photocatalytic process under the high IC conditions. The present study identified the generation of sulfate ion on the catalyst surface and sulfur dioxide(maximum concentrations of 0.0019 and 0.0074 ppm for the photocatalytic processes of DMS and DMDS, respectively) in effluent gas of PU. However, this generation of SO2 would be an insignificant addition to indoor air quality levels.

저자
  • 신명희(경북대학교 환경공학과) | Myeong-Hee Shin
  • 조완근(경북대학교 환경공학과) | Wan-Kuen Jo Corresponding Author