논문 상세보기

Analysis of Bovine Endometrial Functions Using Three-dimensional Cultured Cells

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/361681
모든 회원에게 무료로 제공됩니다.
한국동물생명공학회(구 한국수정란이식학회) (Journal of Animal Reproduction & Biotechnology)
초록

Importance of the in vitro model of tissues or organs is now evident in tissue engineering and cell biology research. Till now, two-dimensional culture systems have been using for in vitro cell culture, and have contributed to cell function studies despite their limitations. Three-dimensional (3D) culture has been utilized in cell biology research because it appears to mimic morphology and physiology of cells in living tissues and organs, unlike conventional monolayer cell culture. In our laboratory, we are developing 3D culture systems of bovine endometrial cells as a tool for the analysis of uterine endometrial functions. Among them, this lecture introduces spheroid culture and Matrigel culture.
1. Spheroid culture; Spheroids are a spherical mass composed of cells and extracellular matrices (ECMs). We have regenerated multicellular spheroids composed of bovine endometrial stromal and epithelial cells using ascorbate (1). Expression of MMPs, which are key enzymes for the tissue remodeling of the endometrium, were analyzed using the spheroid. E2, P4 and type-I IFN did not affect the gene expression of MMPs in the spheroid. However, treatment of type-I IFN increased the clearance of MMPs in the supernatant. These results suggest that IFN indirectly regulates endometrial tissue remodeling through clearance of MMPs.
2. Matrigel culture; It is reported that cells form lumens automatically by culturing cells in Matrigel (2). Matrigel is a solubilized basement membrane extracted derived from EHS mouse sarcoma cells. The bovine endometrial epithelial cells cultured in 15% Matrigel formed a circular or elliptical gland-like structure. Gene expressions of glandular epithelial specific factors (FOXA2, SERPINA14 and GRP) were significantly high in the Matrigel, compared to the monolayer cultured cells, except FOXA2. Further, SERPINA14 expression was affected by neither P4 nor IFN. However, when epithelial cells in Matrigel were co-culture with stromal cells, SERPINA14 expression increased significantly in the treatment of both P4 and IFN. These results suggest that bovine endometrial epithelial cells cultured in Matrigel show properties similar to the glandular epithelial cells in vivo, and regulated by the factors produced by the stromal cells.
Finally, by using these 3D culture systems, it becomes possible to clarify not only factors regulating embryo elongation and implantation but also regulation of their expression. It will be able to reveal the mechanism of the embryo elongation and implantation to contribute to the improvement of the embryo transplantation technique.
(1) Yamauchi N, Yamada O, Takahashi T, Imai K, Sato T, Ito A, Hashizume K. A three-dimensional cell culture model for bovine endometrium: regeneration of a multicellular spheroid using ascorbate. Placenta. 2003; 24(2-3):258-69.
(2) Eritja N, Llobet D, Domingo M, Santacana M, Yeramian A, Matias-Guiu X, Dolcet X. A novel three-dimensional culture system of polarized epithelial cells to study endometrial carcinogenesis. Am J Pathol 2010; 176:2722-2731.

저자
  • Nobuhiko Yamauchi(Laboratory of Reproductive Physiology and Biotechnology Department of Animal and Marine Bioresource Sciences Faculty of Agriculture, Graduate School, Kyushu University)