논문 상세보기

Alterations of Male Fertility following Exposure to Bisphenol A

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/361687
모든 회원에게 무료로 제공됩니다.
한국동물생명공학회(구 한국수정란이식학회) (Journal of Animal Reproduction & Biotechnology)
초록

Bisphenol A (BPA) is a common industrial chemical that has been used extensively to make certain plastics and resins since the 1960s. As a potential endocrine disruptors, BPA has been investigated for its impact on fertility/reproduction in animals and humans. However, the molecular mechanisms of BPA action and standard method for detecting BPA-related health hazards are unclear. Considering in-vitro experimental model, we investigated the effects of BPA (0.0001 to 100 μM) exposure on mouse spermatozoa. We revealed that BPA affects several sperm functions by triggering the mitogen-activated protein kinase, phosphatidylinositol 3-kinase, and protein kinase-A (PKA) activity. High doses of this chemical was also likely for the activation of protein tyrosine phosphorylation in a PKA-dependent signaling consequently induced a precocious acrosome reaction. Simultaneously, BPA has been found to decrease the rate of fertilization and early embryonic development. In addition, BPA induced differential protein expression in spermatozoa were responsible for the pathogenesis of many diseases. Considering in vivo experimental model, we deliberate the effects of gestational BPA exposure (TDI, NOAEL, and LOAEL doses) on both ejaculated and capacitated spermatozoa in F1 adult mice. We confirmed that BPA affects several sperm function in F1 male. These effects appeared to be caused by reduced numbers of stage VIII seminiferous epithelial cells in testis and decreased PKA activity and tyrosine phosphorylation (non-capacitated) in spermatozoa. We also noticed that BPA decreased average litter size as well as compromise the rates of cleavage and blastocyst formation. Proteins differentially expressed in both capacitated/ejaculated spermatozoa play a critical role in energy metabolism, stress responses, and fertility, finally predispose to the development of several diseases. On the basis of these results, we suggest that BPA alter spermatozoa function and the proteomic profile, ultimately affecting their fertility potential. Therefore, it is of critical public health significance to reevaluate the levels of BPA exposure that are currently deemed to be acceptable.

저자
  • Md Saidur Rahman(Department of Animal Science & Technology and BET Research Institute, Chung-Ang University)