최근 정확한 대기오염 및 황사이동예보를 위하여, 대기역학모형과 확산모형의 결합을 통한 수치실험이 실시되고 있다. 본 연구에서는 3차원 대기역학모형( RAMS)과, 확산모형(PDAS)에 사용되는 기상장의 시간분해능이 대기확산장에 미치는 영향을 조사하였다. 그리고 여러 가지 시간분해능의 기상자료를 확산모형에 적용하여 황사입자의 분포 특성과 차이를 수치실험을 통하여 비교분석하였다.
수치실험 결과 다음과 같은 결론을 얻을 수 있었다.
1) RAMS에 의한 바람장 예측결과, 지면과 상층의 바람장이 동조될 수도 있고, 그렇지 않을 수도 있다. 상하층의 바람장이 동조되지 않을 경우 황사의 예측은 황사의 상승고도예측과 밀접하게 관련된다.
2) 황사의 연직분포에서 초기에는 상층의 황사가 먼저 이동을 하게 되며, 시간이 지남에 따라 하층의 황사도 이동을 시작한다. 본 연구에서는 최고 고도 3.9km 까지 도달한다.
3) 수치실험에서 초기(24시)의 경우, 시간해상도에 따른 확산의 차이는 크지 않다. 그러나 시간이 경과함에 따라 입자확산분포의 차이가 크게 나타난다.
4) 3시간 이하의 높은 시간해상도의 경우, 입자분포의 차이가 크지 않다. 그러나 6시간보다 간격이 큰 자료를 이용할 경우, 황사입자분포의 양적측면에서 큰 차이를 나타내며, 밀도 분포의 차이에 일정한 경향성을 가진다
5) 입력 바람장의 시간분해능이 작은 경우 즉 입력시간 간격이 큰 경우, 황사입자는 지역의 주풍성분(동아시아의 경우 편서풍)을 따라 분포한다. 그러나 시간분해능이 큰 경우, 중규모적인 기상현상을 잘 재현되며, 여기에 의하여 주풍의 직각성분인 남북성분의 효과가 크게 나타난다.
이상의 결과에서 확산모형의 입력자료로 사용되어지는 바람장은 보고자하는 기상현상을 잘 표현할 수 있는 시간분해능 내의 자료를 이용하여야하며, 이를 무시할 경우 입자의 농도예측에 많은 오차를 발생시킬 수 있다. 그러므로 확산예보에 앞서 시간분해능에 관한 검증이 필요하다고 판단된다.
In order to predict air pollution and Yellow-sand dispersion precisely, it is necessary to clarify the sensitivity of meteorological field input interval. Therefore numerical experiment by atmospheric dynamic model(RAMS) and atmospheric dispersion model(PDAS) was performed for evaluating the effect of temporal and spatial resolution of meteorological data on particle dispersion.
The results are as follows:
1)Base on the result of RAMS simulation, surface wind direction and speed can either synchronize upper wind or not. If surface wind and upper wind do not synchronize, precise prediction of Yellow-sand dispersion is strongly associated with upwelling process of sand of particle.
2) There is no significant discrepance in distribution of particle under usage of difference temporal resolution of meteorological information at early time of simulation, but the difference of distribution of particles become large as time goes by.
3) There is little difference between calculated particles distributions in dispersion experiments with high temporal resolution of meteorological data. On the other hand, low resolution of meteorological data occur the quantitative difference of particle density and there is strong tendency to the quantitative difference.