논문 상세보기

습식 TCE 분해반응에서 CoOx/TiO2 촉매의 반응활성 및 표면화학적 구조 KCI 등재

On-stream Activity and Surface Chemical Structure of CoOx/TiO2 Catalysts for Continuous Wet TCE Oxidation

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/363381
서비스가 종료되어 열람이 제한될 수 있습니다.
한국환경과학회지 (Journal of Environmental Science International)
한국환경과학회 (The Korean Environmental Sciences Society)
초록

Catalytic wet oxidation of trichloroethylene (TCE) in water has been conducted using TiO2-supported cobalt oxides at 36oC with a weight hourly space velocity of 7,500 h-1. 5% CoOx/TiO2, prepared by using an incipient wetness technique, might be the most promising catalyst for the wet oxidation although it exhibited a transient behavior in time on-stream activity. Not only could the bare support be inactive for the wet decomposition reaction, but no TCE removal also occurred by the process of adsorption on TiO2 surface. The catalytic activity was independent of all particle sizes used, thereby representing no mass transfer limitation in intraparticle diffusion. XPS spectra of both fresh and used Co surfaces gave different surface spectral features for each CoOx. Co 2p3/2 binding energy for Co species in the fresh catalyst appeared at 781.3 eV, which is very similar to the chemical states of CoTiOx such as Co2TiO4 and CoTiO3. The used catalyst exhibited a 780.3-eV main peak with a satellite structure at 795.8 eV. Based on XPS spectra of reference Co compound, the TCE-exposed Co surfaces could be assigned to be in the form of mainly Co3O4. XRD patterns for 5% CoOx/TiO2 catalyst indicated that the phase structure of Co species in the catalyst even before reaction is quite comparable to the diffraction lines of external Co3O4 standard. A model structure of CoOx present predominantly on titania surfaces would be Co3O4, encapsulated in thin-film CoTiOx species consisting of Co2TiO4 and CoTiO3, which may be active for the decomposition of TCE in a flow of water.

저자
  • 김문현(대구대학교 환경공학과/환경기술연구소) | Moon Hyeon Kim Corresponding Author
  • 추광호(경북대학교 환경공학과) | Kwang-Ho Choo