Frankliniella occidentalis is a notorious polyphagous crop pest causing tremendous economic loss. It damages flowers and leaves of host plants and also carries severe plant viruses. During last few decades, it has spread to all continents via transport of plant materials. Following extensive use of insecticides to control F. occidentalis, it has developed high level of resistance due to its short life cycle and high reproductive potential. In this study, RNA interference (RNAi)-based bioassay system was developed to find an alternative control measure for insecticide-resistant population of F. occidentalis. A variety of genes involved in various physiological mechanisms were selected for the test of dsRNA potency (tubulin, v-ATPase, amylase, aquaporin etc.). Each bioassay unit made by 3D printing has a leaf disc placed on 150 ㎕ of 50 ng/ul dsRNA solution and 20 thrips. The mortality was checked, and the dsRNA and leaf disc were replaced every 24 h for 72 h. Of the 20 genes tesetd, tubulin, v-ATPase, and aquaporin showed 31, 38, 38 and 45% of corrected mortality at 72 h post-treatment, respectively. This result suggests the potential of these genes as candidate lethal genes for RNAi-based F. occidentalis control system.