무릎들기 작업 시 전신피로 감지 수준과 근육 피로도를 활용한 다면적 피로현상 모델링
Whole body fatigue detection is an important phenomenon and the factors contributing to whole body fatigue can be controlled if a mathematical model is available for its assessment. This research study aims at developing a model that categorizes whole body exertion into fatigued and non-fatigued states based on physiological and perceived variables. For this purpose, logistic regression was used to categorize the fatigued and non-fatigued subject as dichotomous variable. Normalized mean power frequency of eight muscles from 25 subjects was taken as physiological variable along with the heart rate while Borg scale ratings were taken as perceived variables. The logit function was used to develop the logistic regression model. The coefficients of all the variables were found and significance level was checked. The detection accuracy of the model for fatigued and non-fatigues subjects was 83% and 95% respectively. It was observed that the mean power frequency of anterior deltoid and the Borg scale ratings of upper and lower extremities were significant in predicting the whole body fatigued when evaluated dichotomously (p < 0.05). The findings can help in better understanding of the importance of combined physiological and perceived exertion in designing the rest breaks for workers involved in squat lifting tasks in industrial as well as health sectors.