Diet and temperature are the two most critical environmental factors affecting life-history traits in insects, but the combined effects of these factors have been rarely investigated. In this study, various life-history traits were recorded from adult and larval Drosophila melanogaster fed on one of eight synthetic diets differing in protein:carbohydrate ratio (P:C=1:16, 1:8, 1:4, 1:2, 1:1, 2:1, 4:1, or 8:1) under one of six ambient temperatures (13, 18, 23, 28, 31, or 33oC). The patterns of adult and larval life-history traits expressed across 48 diet-by-temperature combinations were visualized using thin-plate spline technique and the presence of any significant linear, quadratic, and correlational effects of diet and temperature on trait expressions was analyzed using a second-order polynomial multiple regression. Life-history traits exhibited qualitatively different responses to variations in both diet and temperature, with the maximal expression of each trait being achieved at a completely divergent region of the diet-temperature fitness landscape. In adult females, for example, lifespan was maximized at P:C 1:16 under 13oC, but fecundity was maximized at P:C 4:1 under 28oC. These results provide empirical support for the emerging notion that environmental factors, such as diet and temperature, can mediate life-history trade-offs in insects.