The eggs of Asian tiger mosquito, Aedes albopictus, possess high desiccation resistance, which contribute the rapid spread of this mosquito across the world. Melanization of eggshell appear to play a role in the resistance to desiccation. Dopachrome-conversion enzyme (DCE, Yellow) significantly accelerates the melanization of the eggshell. In this study, we demonstrated functional importance of two yellow genes, AalY-g and AalY-g2, in the chorion formation. Both genes were highly induced in the ovary at 48 h after blood meal. Injection of dsRNA for AalY-g or AalY-g2 into adult females had no effect on fecundity. However, the outermost colorless exochorion of the eggs obtained from both dsRNA-treated females was fragile and peeled off in places, and melanization of the endochorion was obviously delayed by several hours. In addition, unlike eggs from control females which acquired high desiccation resistance between 18 and 24 h after oviposition (HAO), 60-70% 24 HAO eggs from either AalY-g- or AalY-g2-deficient females were collapsed when they were moved to an air-dry condition, and the desiccation resistance was not increased in later stages of embryonic development analyzed. TEM analysis revealed that abnormal morphology and ultrastructure of the endochorion, particularly outer-endochorion, in the 24 HAO and older eggs from either AalY-g-and AalY-g2-deficient females. These results indicate that AalY-g and AalY-g2 are required for morphology and formation of the endochorion (outer-endochorion), a structure that appears to be critical for desiccation resistance of the Ae. albopictus eggs.
This work was supported by NRFs (NRF-2015R1A6A3A04060323 and NRF-2018R1A2B6005106)