빅데이터 분석을 통한 기업 경영환경에 대한 이해와 통찰을 구하고자 하는 요구가 산업 및 기업 경영 전반에 증가하고 있다. 이러한 사회적 요구에 따라 산업의 이해와 기업 경영의 이해를 위하여 기업의 경영실적 및 향후 계획을 포괄적으로 담고 있는 기업공시정보를 활용한 연구가 주목을 받고 있다. 이러한 기업공시정보는 대표적인 비정형 데이터로써 텍스트마이닝 방법론을 적용하여 그 범위와 수준에 대한 다양한 접근을 통하여 산업 수준 및 기업 수준에서 다양한 활용이 가능하다. 그러나 아직은 이러한 기업공시자료를 활용한 산업 및 기업 레벨에서 적용가능한 수준의 분석모델이 부족한 것으로 파악된다. 따라서 본 연구에서는 실제 활용 가능한 공개데이터를 활용한 산업 및 기업 수준의 분석모델을 제안하고자 한다. 미국상장기업의 공시자료인 미국 SEC EDGAR 자료를 기반으로 텍스트마이닝 알고리즘을 적용하여 산업 및 기업 수준의 경영주제(토픽)에 대한 추이분석이 가능한 모델을 제안하고자한다.
SEC EDGAR의 10-K 문서를 대상으로 LDA 토픽 모델링을 통하여 산업 수준에서 전체 산업의 주제분야 분류를 파악하였고, 산업간 비교 측면에서 소프트웨어 산업과 하드웨어 산업 분야의 사례를 통해 최근 20년간의 토픽추이를 비교분석 하였다. 또한 최근 20년간의 기업의 경영주제 변화를 소프트웨어 산업에 속한 2개 기업을 중심으로 살펴보았다. 이를 통해 산업 및 기업 수준에서의 경영주제의 추이 변화를 파악하여 쇠퇴 및 성장 추세에 있는 경영주제를 확인 할 수 있었다. 한편 word2vec 워드 임베딩 모델과 주성분분석을 통한 차원 축약을 통해 소프트웨어 산업분야의 기업 및 특정 제품(혹은 서비스)에 대한 매핑을 통해 유사한 경영주제(토픽)를 가지는 기업 및 제품(서비스)을 사례를 통해 파악하였으며, 이를 시간적 흐름에 따른 변화 양상도 관찰할 수 있었다.
본 연구의 목적이 공개데이터를 활용한 산업 및 기업 수준의 분석모델을 개발하기 위한 방법론을 제안한 측면에서, 해외 데이터를 사용하여 산업의 경영주제 변화 추이, 기업의 경영주제 변화 추이를 거시적으로 조망할 수 있는 실무적인 방법론의 제안에서 의의가 있을 수 있다. 한편 기업의 기술경영전략 측면에서 기업의 경영토픽의 잦은 변화, 경영주제의 변화의 속도 등 다양한 변화 양상의 차이에 따른 기업의 매출 등의 경영성과와의 연관성 분석, 실제 기업의 제품포트폴리오의 구성에 따른 기업 간의 경쟁상황 등을 파악하는 미시적 모델 제안을 위한 추가 연구가 요구된다.
There are increasing needs for understanding and fathoming of business management environment through big data analysis at industrial and corporative level. The research using the company disclosure information, which is comprehensively covering the business performance and the future plan of the company, is getting attention. However, there is limited research on developing applicable analytical models leveraging such corporate disclosure data due to its unstructured nature. This study proposes a text-mining-based analytical model for industrial and firm level analyses using publicly available company disclousre data. Specifically, we apply LDA topic model and word2vec word embedding model on the U.S. SEC data from the publicly listed firms and analyze the trends of business topics at the industrial and corporate levels.
Using LDA topic modeling based on SEC EDGAR 10-K document, whole industrial management topics are figured out. For comparison of different pattern of industries’ topic trend, software and hardware industries are compared in recent 20 years. Also, the changes of management subject at firm level are observed with comparison of two companies in software industry. The changes of topic trends provides lens for identifying decreasing and growing management subjects at industrial and firm level. Mapping companies and products(or services) based on dimension reduction after using word2vec word embedding model and principal component analysis of 10-K document at firm level in software industry, companies and products(services) that have similar management subjects are identified and also their changes in decades.
For suggesting methodology to develop analysis model based on public management data at industrial and corporate level, there may be contributions in terms of making ground of practical methodology to identifying changes of managements subjects. However, there are required further researches to provide microscopic analytical model with regard to relation of technology management strategy between management performance in case of related to various pattern of management topics as of frequent changes of management subject or their momentum. Also more studies are needed for developing competitive context analysis model with product(service)-portfolios between firms.