인문사회 과학기술 분야 연구의 학제적 동향 분석 : 토픽 모델링과 네트워크 분석의 활용
As many existing research fields are matured academically, researchers have encountered numbers of academic, social and other problems that cannot be addressed by internal knowledge and methodologies of existing disciplines. Earlier, pioneers of researchers thus are following a new paradigm that breaks the boundaries between the prior disciplines, fuses them and seeks new approaches. Moreover, developed countries including Korea are actively supporting and fostering the convergence research at the national level. Nevertheless, there is insufficient research to analyze convergence trends in national R&D support projects and what kind of content the projects mainly deal with. This study, therefore, collected and preprocessed the research proposal data of National Research Foundation of Korea, transforming the proposal documents to term-frequency matrices. Based on the matrices, this study derived detailed research topics through Latent Dirichlet Allocation, a kind of topic modeling algorithm. Next, this study identified the research topics each proposal mainly deals with, visualized the convergence relationships, and quantitatively analyze them. Specifically, this study analyzed the centralities of the detailed research topics to derive clues about the convergence of the near future, in addition to visualizing the convergence relationship and analyzing time-varying number of research proposals per each topic. The results of this study can provide specific insights on the research direction to researchers and monitor domestic convergence R&D trends by year.