Drosophila melanogaster is mainly found in fermented and rotten fruits and is tolerant to chemicals emitted during the fermentation process. Its distinctive habitat suggests an evolutionary adaptation to environmental chemicals. In order to understand the physiological adaptation of D. melanogaster to the chemicals, we treated LC20 concentration of three chemicals (acetic acid, ethanol and 2-phenylethanol) and differential expression of the female whole body transcripts were compared with control fly (no chemical treatment). Compared to control fly, 94, 137 and 59 genes were up-regulated, while 85, 184 and 166 genes were down-regulated in acetic acid, 2-phenylethanol and ethanol treated flies, respectively. According to the KEGG enrichment analysis, genes categorized in metabolic pathway, Toll/IMD signaling pathway, lysosome and autophagy were ranked in the top groups of most changed gene sets after three chemical treatment. In addition, we selected 7 genes showing different expression levels in transcriptome analysis, and investigated their expression changes in the flies exposed to various concentration of three chemicals using quantitative PCR.