Insect cuticle tanning (pigmentation and sclerotization) is a complex and vital physiological process that begins with tyrosine and is responsible for production of both melanin- and quinoid-type pigments. In addition, these quinones undergo isomerization to quinone methides and cross-linking reactions with cuticular proteins for cuticle sclerotization. In this study, we studied the functions of TmDDC and TmY-y as well as TmNAT1, TmADC and Tmebony from Tenebrio molitor, which are involved in the tyrosine-derived melanin- and quinoid-type pigment productions, respectively. The temporal and spatial expression patterns of the genes were analyzed by real-time PCR. RNA interference was performed to understand the genetic regulation and molecular mechanism underlying the darkening and hardening of beetle cuticle.