An FRP(fiber reinforced polymer)-concrete hybrid hollow offshore wind power tower was proposed. To design this new-type wind tower, a design program was developed. It can design optimized sections automatically with the consideration of material nonlinearities. When the outer diameter and requested capacities of the hybrid tower are given, the developed program performs axial force-bending moment interaction analyses for one thousand sections of the tower and suggests ten economically optimized designs. The analysis considers material nonlinearities of concrete and FRP, and the confining effect of concrete. By using the developed program, example design processes were performed for a 5.0MW turbine and a 3.6MW turbine. The designing process was performed for the loads of wind power turbine and wind load. The designed section and analysis results showed the developed program suggested rational and satisfactory section designs.