The polyurethane spring, which provides the restoring force for a sliding bridge bearing, governs the overall behavior of the bearing. An analytical model, therefore, which reflects actual geometrical shape and can be utilized easily in engineering practice, is needed to be developed. In this paper, a simplified model for analyzing the polyurethane spring utilized in the sliding bridge bearing is presented. The model is developed for a cylindrical tube based on Gent’s model, and can be utilized for various height-diameter ratios. The accuracy of the proposed model are compared to existing models via experimental data as well as numerical analysis results. The comparison result shows that the proposed model can be used in estimating mechanical behavior of the cylindrical tube shaped polyurethane spring.