논문 상세보기

계면경계조건이 매입된 이동최소제곱 차분법을 이용한 계면경계문제 해석 KCI 등재

Analysis of Interface Problem using the MLS Difference Method with Interface Condition Embedment

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/379006
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
한국전산구조공학회 논문집 (Journal of the Computational Structural Engineering Institute of Korea)
한국전산구조공학회 (Computational Structural Engineering Institute of Korea)
초록

복합재료의 열전달 문제는 일반적으로 만족시켜야 하는 보존방정식과 경계조건 외에 추가적으로 만족시켜야 하는 계면경계조건의 존재로 인해 새로운 수치기법의 개발에 어려움이 있다. 계면경계조건이 미분방정식의 해에 불연속성을 유발시키기 때문에 이것을 적절하게 처리할 수 있는 특수한 함수의 도입이 필요하며, 이산화를 통한 계 방정식의 구성도 쉽지 않다. 본 논문에서는 계면경계의 불연속성을 모사하는 특수함수를 포함하면서 계면경계조건을 항상 만족시킬 수 있도록 계면경계식 자체를 매입한 미분근사식을 제안하고, 불연속 재료상수를 갖는 열전달 문제를 무요소 강형식으로 이산화한 이동최소제곱 차분법을 제시한다. 개발된 수치기법은 기존의 수치기법들과 달리 수치적분과 계면경계조건을 만족시키기 위한 별도의 구속 방정식이 필요없으며, 빠르고 정확하게 이종재료 열전달 문제의 수치해를 구해준다. 개발된 수치기법으로 다양한 복합재료 열전달 문제를 해석하고 오차의 수렴률을 조사한 결과, 높은 정확성과 계산 효율성을 갖는다는 것을 확인할 수 있었으며, 특히, 계면경계가 기하학적 특이성을 나타내는 문제에서도 우수한 성능을 발휘하는 것을 보였다.

The heat conduction problem with discontinuous material coefficients generally consists of the conservative equation, boundary condition, and interface condition, which should be additionally satisfied in the solution procedure. This feature often makes the development of new numerical schemes difficult as it induces a layered singularity in the solution fields; thus, a special approximation is required to capture the singular behavior. In addition to the approximation, the construction of a total system of equations is challenging. In this study, a wedge function is devised for enriching the approximation, and the interface condition itself is embedded in the moving least squares(MLS) derivative approximation to consistently satisfy the interface condition. The heat conduction problem is then discretized in a strong form using the developed derivative approximation, which is named as the interface immersed MLS difference method. This method is able to efficiently provide a numerical solution for such interface problems avoiding both numerical quadrature as well as extra difference equations related to the interface condition enforcement. Numerical experiments proved that the developed numerical method was highly accurate and computationally efficient at solving the heat conduction problem with interfacial jump as well as the problem with a geometrically induced interfacial singularity.

목차
Abstract
1. 서 론
2. 복합재료 열전도 방정식 해석을 위한 계면경계조건이 매입된 근사함수
3. 지배 미분방정식에 대한 차분식의 구성
4. 수치예제
    4.1 원형 계면경계를 갖는 열전달 문제
    4.2 사각형 계면경계를 갖는 열전달 문제
    4.3 쐐기형상의 계면경계를 갖는 열전달 문제
4. 결 론
References
요 지
저자
  • 윤영철(명지전문대학 토목공학과) | Young-Cheol Yoon (Department of Civil Engineering, Myongji College) Corresponding author