Effect of Subtalar Joint Neutral Position and Knee Position on the Passive Ankle Dorsiflexion Range of Motion
Background: Measurement of passive ankle dorsiflexion range of motion (ADROM) is often part of a physical therapy assessment.
Objects: The objective of this study was to identify the effects of subtalar joint neutral position (SJNP) on passive ADROM according to knee position in young adults.
Methods: We recruited 14 young adult participants for this study. Two examiners used a universal goniometer to measure passive ADROM with and without SJNP. Dorsiflexion force was applied to the forefoot until maximum resistance was reached in two knee positions (extension and 90˚ flexion) in the prone position. Subtalar joint position was also recorded at maximum ADROM. Passive ADROM was measured three times at different knee and subtalar joint positions, in random order. Two-way repeated-measures analysis of variance was used to compare the effects of subtalar joint and knee position on passive ADROM.
Results: Passive ADROM was significantly lower with than without SJNP during both knee extension (mean difference: 7.4˚) and 90˚ flexion (mean difference: 16.9˚) (p<.01). Passive ADROM was significantly higher during 90˚ knee flexion than during knee extension both with (mean difference: 5.8˚) and without SJNP (mean difference: 15.2˚) (p<.01). The valgus position of the subtalar joint was significantly lower with than without SJNP during both knee extension (mean difference: 3.3˚) and 90˚ flexion (mean difference: 4.3˚) (p<.01).
Conclusion: Our results indicate that the gastrocnemius may limit ankle dorsiflexion more than the soleus does. Greater dorsiflexion at the subtalar and midtarsal joints was observed during passive ADROM measurement without than that with SJNP; therefore, SJNP should be maintained for accurate measurement of ADROM.