딥러닝 모델은 주어진 학습용 데이터에서 탐지하고자 하는 물체의 특징을 추출하기 때문에, 딥러닝 모델 학습을 위한 학습용 데이터 구축은 매우 중요하다. 본 연구에서는 균열을 탐지하는 딥러닝 모델의 성능을 향상시키기 위해, 실제 콘크리트 구조물이나 아스팔트 도로 표면에서 자주 발견될 수 있는 나뭇가지, 거미줄, 전선 등을 학습 데이터에 자동으로 포함시키고, negative 영역으로 분류하는 알고리즘을 개발하였다. 제안된 알고리즘을 사용하여 학습된 딥러닝 모델을 실제 도로 표면에 발생한 균열 탐지에 적용하여 실제 균열 탐지에 사용될 수 있음을 보였다.