본 연구는 농업용 호소의 녹조발생을 간편하고, 효율적으로 진단할 수 있는 도구를 개발하고자 하였다. 2018년 4월~10월 동안 15개 농업용 호소에서 채취된 182개의 시료를 이용하여 식물플랑크톤 현존량을 반영할 수 있는 수질 이화학적 항목을 살펴보고자 식물플랑크톤과 TN, TP, Chl-a, SD 등의 상관계수 (r)를 분석한 결과, 총 식물플랑크톤 현존량은 Chl-a (r=0.666), SD (r= -0.351)와 높은 상관관계, 남조류와 유해 남조류 현존량 역시 Chl-a과 각각 r=0.664, r=0.353, SD와 각각 r= - 0.340, r= -0.338로 유의성 있는 상관관계를 보여주었으나 TN, TP의 항목과는 유의한 상관관계가 나타나지 않았다. Chl-a 농도는 SD와 r= -0.434의 상관관계를 보여주어 식물플랑크톤 현존량 보다 높은 유사성을 나타냈으므로, 조류경보제에서 사용하는 유해 남조류 현존량 분석을 대신하여 녹조예찰을 위한 진단 요소항목으로 Chl-a와 SD를 선정하고 실시간 SD 실측 값을 이용하여 진단을 할 경우 그 결과에 대한 유의성이 있는 것으로 판단되었다. 녹조진단 도구는 SD와 탁도 측정 방법을 변형한 역원뿔 모양의 용기와 녹조판단조견표로 구성되어 있으며, 현장수를 채취하여 녹조발생 정도에 따라 용기 내에 보이는 원형환의 개수 또는 각 원형환에 표시 된 숫자를 관찰하고, 조류의 색도를 녹조판단조견표와 비교하여 최종 녹조단계를 판별할 수 있도록 하였다. 또한, 정확한 진단을 위해 Chl-a 농도와 원형환의 수에 근거한 4단계 진단 기준과 Hexa 코드명이 표기된 부채모양의 조견표를 제시하여 한가지 방법에 따른 변수와 오차를 보완하고 판단의 편리성을 함께 제공하였다. 이를 통해 농업용 호소의 녹조진단을 용이하게 할 수 있을 것으로 기대되며, 녹조 관리방안 수립을 효율화하여 녹조로부터 안전하고 건강한 농업용수 확보가 가능할 것으로 판단된다.
This study was designed to develop simple tools to easily and efficiently predict the occurrence of algal bloom in agricultural lakes. Physicochemical water quality parameters were examined to reflect the phytoplankton productivity in 182 samples collected from 15 agricultural lakes from April to October 2018. Total phytoplankton abundance was significantly correlated with chlorophyll-a (Chl-a) (r=0.666) and Secchi depth (SD) (r= -0.351). The abundances of cyanobacteria and harmful cyanobacteria were also correlated with Chl-a (r=0.664, r=0.353) and SD (r= -0.340, r= -0.338), respectively, but not with total nitrogen (TN) and total phosphorus (TP). The Chl-a concentration was correlated with SD (r= -0.434), showing a higher similarity than phytoplankton abundance. Therefore, Chl-a and SD were selected as diagnostic factors for algal bloom prediction, instead of analyzing the standing crop of harmful cyanobacteria used in algae alarm systems. Specifically, accurate diagnoses were made using realtime SD measurements. The algal bloom diagnostic tool is an inverse cone-shaped container with an algal bloom diagnosis chart that modified SD and turbidity measurement methods. Lake water was collected to observe the number of rings visible in the container or the number indicated in each ring, depending on the degree of algal bloom,and to determine the final stage of algal blooming by comparison to the colorimetric level on the diagnosis chart. For an accurate diagnosis, we presented 4-step diagnostic criteria based on the concentration of Chl-a and the number of rings and a fan-shaped algal bloom diagnosis chart with Hexa code names. This tool eliminated the variables and errors of previous methods and the results were easily interpreted. This study is expected to facilitate the diagnosis of algal bloom in agricultural lakes and the establishment of an efficient algal bloom management plan.