PURPOSES: The purpose of this study is to develop a traffic accident prediction model using statistical data, to analyze child traffic accidents in school zones. Furthermore, we analyze the factors affecting child traffic accidents, as obtained from the results of the developed model. METHODS : From the literature review, we obtained data for child traffic accidents and various variables relating to road geometry and traffic safety facilities in school zones. We used these variables and data to develop a child traffic accident analysis model. The model was then developed into three types using the Limdep 9.0 statistical tool.
RESULTS: As a result of the overdispersion test, the Poisson regression model was applied to all types of models with an overdispersion coefficient of close to zero. The results of the model development are as follows. The main model (all scope of analysis) was for a kindergarten, considering a local roadway, the accessibility of the roadway, the number of unsignalized intersections, and the school zones in commercial area as variables that increase traffic accidents. Sub-model typeⅠ(only the roadway connected to the main entrance) was for a kindergarten, considering a local roadway, skid resistant pavement, no-parking signs, the number of unsignalized intersections, and the number of commercial facilities as variables that increase traffic accidents. The main model and sub-model type Ⅰ showed a reduction in accidents when using forward-type traffic signals. Sub-model typeⅡ(only the roadway not connected to the main entrance) shows that the local roadway is the variable that most increases the probability of traffic accidents. However, when the roadway and walkway are separated, the probability of traffic accidents decreases significantly, by up to 90%. CONCLUSIONS: The results of this study demonstrate the need to restructure the method used to improve school zones. Moreover, the effect of various traffic safety facilities was quantitatively analyzed.