Debris disks are important observational clues to understanding on-going planetary system formation. They are usually identied by signicant mid-infrared excess on top of the photospheric emission of a central star on the basis of prediction from J-, H-, and Ks-band uxes and the stellar model spectra. For bright stars, 2MASS near-infrared uxes suffer large uncertainties due to the near-infrared camera satu- ration. Therefore we have performed follow-up observations with the IRSF 1.4 m near-infrared telescope located in South Africa to obtain accurate J-, H-, and Ks-band uxes of the central stars. Among 754 main-sequence stars which are detected in the AKARI 18 m band, we have performed photometry for 325 stars with IRSF. As a result, we have successfully improved the ux accuracy of the central stars from 9.2 % to 0.5 % on average. Using this dataset, we have detected 18 m excess emission from 57 stars in our samples with a 3 level. We nd that some of them have high ratios of the excess to the photospheric emission even around very old stars, which cannot be explained by the current planet-formation theories.