해상풍은 해양 현상을 이해하고, 지구 온난화에 의한 지구 환경의 변화를 분석하기 위한 필수 요소이다. 전세계 연구 기관은 해상풍을 정확하고 지속적으로 관측하기 위해 산란계(scatterometer)를 개발하여 운영해오고 있으며, 정확도는 풍향이 ±20°, 풍속이 ±2 m s−1 안팎이다. 하지만, 산란계의 해상도는 12.5-25.0 km로, 해안선이 복잡하고 섬이 많은 한반도 근해에서는 자료의 결측이 빈번하게 발생하여 활용도가 감소한다. 그에 반해, Synthetic Aperture Radar (SAR, 합성개구레이더)는 마이크로파를 활용하는 전천후 센서로, 1 km 이하의 고해상도 해상풍이 산출이 가능하여 산란계의 단점 보완이 가능하다. 본 연구에서는 일반적으로 활용되는 SAR 자료 기반 해상풍 산출 알고리즘인 Geophysical Model Function (GMF, 지구 물리 모델 함수)를 밴드별로 분류하여 조사하였다. 상대 풍향, 입사각, 풍속에 따른 후방산 란계수를 L-band Model (LMOD, L 밴드 모델), C-band Model (CMOD, C 밴드 모델), X-band Model (XMOD, X 밴 드 모델)에 적용하여 모의하였고, 각 GMF의 특성을 분석하였다. 이러한 GMF를 SAR 탑재 인공위성 자료에 적용하여 산출한 해상풍의 정확도 검증 연구에 대해 조사하였다. SAR 자료 기반 해상풍의 정확도는 영상 관측 모드, 적용한 GMF의 종류, 정확도 비교 기준 자료, SAR 자료 전처리 방법, 상대 풍향 정보 산출 방법 등에 따라 변하는 것으로 나타났다. 본 연구를 통해 국내 연구자들의 SAR 자료 기반 해상풍 산출 방법에 대한 접근성이 향상되고, 고해상도 해상풍 자료를 활용한 한반도 근해 분석에 이바지할 것으로 기대된다.
Sea surface wind is a fundamental element for understanding the oceanic phenomena and for analyzing changes of the Earth environment caused by global warming. Global research institutes have developed and operated scatterometers to accurately and continuously observe the sea surface wind, with the accuracy of approximately ±20o for wind direction and ±2 m s−1 for wind speed. Given that the spatial resolution of the scatterometer is 12.5-25.0 km, the applicability of the data to the coastal area is limited due to complicated coastal lines and many islands around the Korean Peninsula. In contrast, Synthetic Aperture Radar (SAR), one of microwave sensors, is an all-weather instrument, which enables us to retrieve sea surface wind with high resolution (<1 km) and compensate the sparse resolution of the scatterometer. In this study, we investigated the Geophysical Model Functions (GMF), which are the algorithms for retrieval of sea surface wind speed from the SAR data depending on each band such as C-, L-, or X-band radar. We reviewed in the simulation of the backscattering coefficients for relative wind direction, incidence angle, and wind speed by applying LMOD, CMOD, and XMOD model functions, and analyzed the characteristics of each GMF. We investigated previous studies about the validation of wind speed from the SAR data using these GMFs. The accuracy of sea surface wind from SAR data changed with respect to observation mode, GMF type, reference data for validation, preprocessing method, and the method for calculation of relative wind direction. It is expected that this study contributes to the potential users of SAR images who retrieve wind speeds from SAR data at the coastal region around the Korean Peninsula.