논문 상세보기

TURBULENCE PRODUCED BY TSUNAMIS IN GALAXY CLUSTERS KCI 등재 SCOPUS

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/386849
구독 기관 인증 시 무료 이용이 가능합니다. 3,000원
천문학회지 (Journal of The Korean Astronomical Society)
한국천문학회 (Korean Astronomical Society)
초록

Clusters of galaxies are filled with X-ray emitted hot gas with the temperature of T ${\~}$ 수식 이미지2-10 keV. Recent X-ray observations have been revealing unexpectedly that many cluster cores have complicated, peculiar X-ray structures, which imply dynamical motion of the hot gas. Moreover, X-ray spectra indicate that radiative cooling of the cool gas is suppressed by unknown heating mechanisms (the 'cooling flow problem'). Here we propose a novel mechanism reproducing both the inhomogeneous structures and dynamics of the hot gas in the cluster cores, based on state-of-the-art hydrodynamic simulations. We showed that acoustic-gravity waves, which are naturally expected during the process of hierarchical structure formation of the universe, surge in the X-ray hot gas, causing a serous impact on the core. This reminds us of tsunamis on the ocean surging into an distant island. We found that the waves create fully-developed, stable turbulence, which reproduces the complicated structures in the core. Moreover, if the wave amplitude is large enough, they can suppress the cooling of the core. The turbulence could be detected in near-future space X-ray missions such as ASTRO-E2.

저자
  • YUTAKA FUJITA(National Astronomical Observatory)
  • TOMOAKI MATSUMOTO(Department of Humanity and Environment, Hosei University)
  • KEIICHI WADA(Department of Humanity and Environment, Hosei University)