논문 상세보기

CO OBSERVATIONS OF A HIGH LATITUDE CLOUD MBM 40 WITH A HIGH RESOLUTION AUTOCORRELATOR KCI 등재 SCOPUS

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/387587
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
천문학회지 (Journal of The Korean Astronomical Society)
한국천문학회 (Korean Astronomical Society)
초록

We have mapped 1 deg2 region toward a high latitude cloud MBM 40 in the J = 1 - 0 transition of 12CO and 13CO, using the 3 mm SIS receiver on the 14 m telescope at Taeduk Radio Astronomy Observatory. We used a high resolution autocorrelator to resolve extremely narrow CO linewidths of the molecular gas. Though the linewidth of the molecular gas is very narrow (FWHP < 1 km s-1), it is found that there is an evident velocity difference between the middle upper part and the lower part of the cloud. Their spectra for both of 12CO and 13CO show blue wings, and the position-velocity map shows clear velocity difference of 0.4 km s-1 between two parts. The mean velocity of the cloud is 3.1 km s-1. It is also found that the linewidths at the blueshifted region are broader than those of the rest of the cloud. We confirmed that the visual extinction is less than 3 magnitude, and the molecular gas is translucent. We discussed three mass estimates, and took a mass of 17 solar masses from CO integrated intensity using a conversion factor 2.3 × 10 20 cm -2 (K km s-1)-1. Spatial coincidence and close morphological similarity is found between the CO emission and dust far-infrared (FIR) emission. The ratio between the 100 f.Lm intensity and CO integrated intensity of MBM 40 is 0.7 (MJy/sr)/(K km s-1), which is larger than those of dark clouds, but much smaller than those of GMCs. The low ratio found for MBM 40 probably results from the absence of internal heating sources, or significant nearby external heating sources.

저자
  • YOUNGUNG LEE(Korea Astronomy Observatory, Taeduk Radio Astronomy Observatory)
  • HYUN SOO CHUNG(Korea Astronomy Observatory, Taeduk Radio Astronomy Observatory)
  • HYORYOUNG KIM(Korea Astronomy Observatory, Taeduk Radio Astronomy Observatory)