I discuss implications of gamma-ray emission from blazars based on electron acceleration by shock waves in a relativistic jet. The number spectrum of electrons turns out to be a broken power law; while at low energies the power law index has a universal value of 2, at high energies it steepens to an index of 3 because of strong radiative cooling. This spectrum can basically reproduce the observed spectral break between X-rays and gamma-rays. I show that energetics of relativistic jets can be well explained by this model. I estimate physical quantities of the relativistic jets by comparing the prediction with observations. The results show that the jets are particle dominated and are comprised of electron-positron pairs. A connection between gamma-ray emission and radiation drag is also discussed.