고압 환경에서 규산염 용융체의 원자 구조에 대한 정보는 지구 내부 마그마의 열전도율이나 주변 암석과의 원소 분배계수와 같은 이동 물성을 이해하는 단서를 제공한다. 규소의 전자 구조는 규산염 다면체 주 변의 산소 원자 분포와 연관성을 가질 것으로 예상되나, 이 사이의 상관관계가 명확하게 밝혀져 있지 않다. 본 연구는 SiO2의 고밀도화에 따른 규소의 전자 구조 변화의 미시적인 기원을 규명하기 위해 SiO2 동질이상 의 규소 부분 상태 밀도와 L3-edge X-선 흡수분광분석(X-ray absorption spectroscopy; XAS) 스펙트럼을 계산 하였다. 규소의 전도 띠 영역에서 전자 구조는 결정 구조에 따라서 변화하였다. 특히 d-오비탈은 108, 130 eV 영역에서 배위 환경에 따른 뚜렷한 차이를 보였다. 계산된 XAS 스펙트럼은 규소 전도 띠의 s,d-오비탈에서 기인하는 피크를 보였으며, 결정 구조에 따라 s,d-오비탈과 유사한 양상으로 변화했다. 계산된 석영의 XAS 스펙트럼은 SiO2 유리의 X R S 실험 결과와 유사하였으며 규소 주변 원자 환경이 비슷하기 때문으로 생각된 다. XAS 스펙트럼을 수치화한 무게 중심 값은 Si-O 결합 거리와 밀접한 상관관계를 가지며 이로 인하여 고 밀도화 과정에서 체계적으로 변화한다. 본 연구의 결과는 Si-O 결합 거리에 민감한 규소 L2,3-edge XRS가 규 산염 유리 및 용융체의 고밀도화 기작을 규명하는 과정에서 유용하게 적용될 수 있음을 지시한다.
The atomic structures of silicate liquids at high pressure provide insights into the transport properties including thermal conductivities or elemental partitioning behavior between rocks and magmas in Earth’s interior. Whereas the local electronic structure around silicon may vary with the arrangement of the nearby oxygens, the detailed nature of such relationship remains to be established. Here, we explored the atomic origin of the pressure-induced changes in the electronic structure around silicon by calculating the partial electronic density of states and L3-edge X-ray absorption spectra of SiO2 polymorphs. The result showed that the Si PDOS at the conduction band varies with the crystal structure and local atomic environments. Particularly, d-orbital showed the distinct features at 108 and 130 eV upon the changes in the coordination number of Si. Calculated Si XAS spectra showed features due to the s,d-orbitals at the conduction band and varied similarly with those observed in s,d-orbitals upon changes in the crystal structures. The calculated Si XAS spectrum for -quartz was analogous to the experimental Si XRS spectrum for SiO2 glass, implying the overall similarities in the local atomic environments around the Si. The edge energies at the center of gravity of XAS spectra were closely related to the Si-O distance, thus showing the systematic changes upon densification. Current results suggest that the Si L2,3-edge XRS, sensitive probe of the Si-O distance, would be useful in unveiling the densification mechanism of silicate glasses and melts at high pressure.