PURPOSES : The purpose of this study is to evaluate the performance characteristics of stone mastic asphalt (SMA) pavement by comparison with polymer modified asphalt (PMA) pavement and conventional asphalt pavement, to check the performance characteristics according to the pavement type, pavement materials, traffic volume, and environmental factors and to analyze the quality variation characteristics according to the pavement materials using data extracted from the database of the expressway long-term pavement performance.
METHODS : Approximately 10% outlier data of pavement performance data were excluded in order to increase the reliability of the analysis results before evaluating the asphalt pavement performance. The performance model was developed through linear regression analysis by setting the performance period as the independent variable and the highway pavement condition index (HPCI) as the dependent variable. Descriptive statistic analysis of HPCI using the static package for social science (SPSS) tool and the analysis of variance was performed to identify the quality variation characteristics according to the pavement materials. The amount of de-icing agent and traffic level of service were classified as two levels in order to check the influence of traffic volume and environmental factors on the performance characteristics of the asphalt pavement.
RESULTS : The tentative pavement performance lives were calculated at 19.3 years for new the SMA pavement (GPS-2), 14.3 years for the SMA overlay on the asphalt pavement (GPS-6), and 10.3 years for the SMA overlay on the concrete pavement (GPS-7). In case of the asphalt overlay, the tentative performance lives were calculated at 8.2 years for the PMA overlay on the asphalt pavement (GPS-6), 7.2 years for the PMA overlay on the concrete pavement (GPS-7), 7.2 years for the conventional asphalt overlay on the asphalt pavement (GPS-6), and 5.5 years for the conventional asphalt overlay on the concrete pavement (GPS-7).
CONCLUSIONS : It was confirmed that the SMA pavement showed better performance and quality variation characteristics than the PMA and conventional asphalt pavement. The performance characteristics of the asphalt pavement (GPS-2) was better than the asphalt overlay pavement, and the asphalt overlay on the asphalt pavement (GPS-6) had better performance characteristics than the asphalt overlay on the concrete pavement (GPS-7). It was observed that the asphalt overlay on the asphalt pavement (GPS-6) was strongly influenced by the traffic volume and the asphalt overlay on concrete pavement (GPS-7) was strongly influenced by the traffic volume and de-icing agent.