Because the inner environment of greenhouse has a direct impact on crop production, many studies have been performed to develop technologies for controlling the environment in the greenhouse. However, it is difficult to apply the technology developed to all greenhouses because those studies were conducted through empirical experiments in specific greenhouses. It takes a lot of time and cost to develop the models that can be applicable to all greenhouse in real situation. Therefore studies are underway to solve this problem using computer-based simulation techniques. In this study, a model was developed to predict the inner environment of glass greenhouse using CFD simulation method. The developed model was validated using primary and secondary heating experiment and daytime greenhouse inner temperature data. As a result of comparing the measured and predicted value, the mean temperature and uniformity were 2.62°C and 2.92%p higher in the predicted value, respectively. R2 was 0.9628, confirming that the measured and the predicted values showed similar tendency. In the future, the model needs to improve by applying the shape of the greenhouse and the position of the inner heat exchanger for efficient thermal energy management of the greenhouse.