본 연구에서는 뇌파와 맥파를 이용한 생체신호 분석을 통해 자율주행차량 사용자에게 안정감을 유발하는 최적의 색온도를 제안하고자 하였다. 이를 위해 3000 K, 4000 K, 5000 K, 6000 K의 색온도를 갖는 조명을 자율주행 환경에 적용하여 제시하였다. 실험은 자동차 그래픽 시뮬레이터가 구비된 실험실에서 진행되었으며, 실험절차는 다음과 같다. 1) 안정기(5분), 2) U-K테스트(3분), 3) 자율주행+조명(3분). 이 과정은 색온도를 변경해가며 총 4회 반복되었다. 수집된 시계열데이터에 대해 주파수 분석을 실시하였고 파워 스펙트럼 분석을 통해 주파수 대역별 power값을 산출하였다. 뇌파는 안정의 지표인 α파와 각성의 지표인 β에 대해 분석을 실시하였으며, 맥파의 경우 교감신경계 활성도에 대해 분석을 실시하였다. 산출된 데이터는 연구대상자 개인 간 편차를 줄이기 위해 정규화하여 통계분석을 실시하였다. 1차 분석 결과, 뇌파의 경우 5000 K의 조명을 제시하였을 때 α파가 가장 높았고, 대부분의 조명 제시 상황에서 β파가 증가하였다. 맥파의 경우 주행 상황에서 SNSA가 증가하였다. β파와 SNSA에 대한 2차 분석 결과, 유의수준 5%에서 색온도 간 유의한 차이가 인정되지 않았다. 결론적으로, α파가 가장 높은 5000 K의 색온도가 안정감을 유발한다고 볼 수 있다. 이러한 결과를 자율주행차량에 적용한다면, 탑승자의 높은 만족도를 유발할 수 있을 것으로 보인다. 나아가, 이와 같은 긍정적인 효과가 자율주행차량의 수용으로 이어질 수 있다.
The purpose of this work is to suggest the optimal color temperature, which induces a sense of comfort for autonomous vehicle users through the analysis of biosignal using electroencephalography (EEG) and photoplethysmography (PPG). To achieve this purpose, we applied lighting with a color temperature of 3000 K, 4000 K, 5000 K, and 6000 K to the autonomous driving environment. We experimented in a laboratory equipped with a graphic driving simulator. The experimental procedure is as follows: 1) stabilization (5 min). 2) Uchida- Kraepelin test (3 min). 3) Automatic driving + lighting (3 min). This procedure was repeated four times under different color temperatures. We performed frequency analysis on a collected time-series data and calculated the power value for each frequency band through power spectrum analysis. In the case of EEG, we analyzed α- and β-waves, which are indicators of stability and arousal, respectively. In the case of PPG, we analyzed the sympathetic nervous system activity. To reduce deviations between the subjects, we normalized the data before analysis. The result of the first analysis revealed that α-wave increased only at 5000 K, while the β-wave increased at almost all color temperatures. In addition, in the case of PPG, sympathetic nervous system activity (SNSA) increased under driving conditions. The result of the second analysis revealed that the difference between β-wave and SNSA is insignificant. In conclusion, the increase in α-waves showed that EEG was most stable at 5000 K. The results of this study can be applied to the upcoming autonomous driving era to induce high driver satisfaction. Furthermore, this approach could eventually lead to the acceptance of autonomous vehicles by suggesting a positive effect of autonomous driving.