In order to explore the time dependence of the closure parameters of the two-fluid calculations for supernova remnants and the terminal shocks of stellar winds, we have considered a simple model in which the time evolution of the cosmic-ray distribution function was followed in the test-particle limit using the Bohm diffusion model. The particles are mostly accelerated to relativistic energy either in the free expansion phase of the SNRs or in the early phase of the stellar winds, so the evolution of the closure parameters during these early stages is substantial and should be followed correctly. We have also calculated the maximum momentum which is limited by either the age or the curvature of these spherical shocks. We found that SNRs expanding into the medium where the gas density decreases with the distance from the explosion center might be necessary to explain the observed power-law distribution of the galactic cosmic rays. The energy loss due to the escaping energetic particles has been estimated for the terminal shocks of the stellar winds.