논문 상세보기

신경망기법을 활용한 선박 가치평가 모델 개발 KCI 등재

Development of Ship Valuation Model by Neural Network

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/405742
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
해양환경안전학회지 (Journal of the Korean Society of Marine Environment and Safety)
해양환경안전학회 (The Korean Society Of Marine Environment & Safety)
초록

본 연구의 목적은 Neural Network Regression 모델을 활용하여 선박의 가치평가 모델을 개발하는 것이다. 가치평가의 대상은 중고 VLCC선이며, 선행연구를 통해 선박의 가치 변화를 유발하는 주요 요인들을 선별하여 변수를 설정하고, 2000년 1월부터 2020년 8 월까지의 해당 데이터를 확보하였다. 변수의 안정성을 판단하기 위해 다중 공선성 검사를 수행하여 최종적으로 6개의 독립변수와 1개의 종속변수를 선정하고 연구 구조를 설계하였다. 이를 바탕으로 Linear Regression, Neural Network Regression, Random Forest Algorithm을 활용하여 총 9개의 시뮬레이션 모델을 설계하였다. 또한 각 모델간의 비교검증을 통해 평가결과의 정확성을 제고시켰다. 평가 결과, VLCC실제값과의 비교를 통해 2층으로 구성된 Hidden Layer의 Neural Network Regression 모델이 가장 정확도가 높은 것으로 나타났다. 본 연구의 시사점은 첫째, 기존 정형화된 평가기법에서 벗어나 기계학습기반 모델을 선박가치평가에 적용하였다는 점이다. 둘째, 해운시 장 변화요인을 동태적 관점에서 분석하고 예측함으로써 연구결과의 객관성을 제고시켰다고 할 수 있다.

The purpose of this study is to develop the ship valuation model by utilizing the neural network model. The target of the valuation was secondhand VLCC. The variables were set as major factors inducing changes in the value of ship through prior research, and the corresponding data were collected on a monthly basis from January 2000 to August 2020. To determine the stability of subsequent variables, a multi-collinearity test was carried out and finally the research structure was designed by selecting six independent variables and one dependent variable. Based on this structure, a total of nine simulation models were designed using linear regression, neural network regression, and random forest algorithm. In addition, the accuracy of the evaluation results are improved through comparative verification between each model. As a result of the evaluation, it was found that the most accurate when the neural network regression model, which consist of a hidden layer composed of two layers, was simulated through comparison with actual VLCC values. The possible implications of this study first, creative research in terms of applying neural network model to ship valuation; this deviates from the existing formalized evaluation techniques. Second, the objectivity of research results was enhanced from a dynamic perspective by analyzing and predicting the factors of changes in the shipping. market.

목차
요 약
Abstract
1. 서 론
2. 선행연구
3. 모델 설계
    3.1 변수 설정
    3.2 모델 생성
4. 실험 결과
    4.1 각 모델이 예측한 VLCC Second-hand Price
    4.2 각 모델의 정확도 비교
5. 결 론
References
저자
  • 김동균(목포해양대학교 항해학부) | Donggyun Kim (Division of Navigation Science, Mokpo National Maritime University)
  • 최정석(목포해양대학교 해상운송학부) | Jung-Suk Choi (Division of Maritime Transportation, Mokpo National Maritime University) Corresponding Author