PURPOSES : In this study, an ASR-reducing (alkali-silica reaction) cement was developed to prevent the blow-up of concrete pavements. To develop ASR-reducing cement, various amounts of ground granulated blast furnace slag (GGBFS), and fly ash (FA) were substituted with Portland cement, and the ASR reduction effect was verified through various experiments.
METHODS : The physical properties of ASR-reducing cement, varying with the substitution amounts of GGBFS and FA, were verified through compressive strength tests. In addition, the ASR reduction effect was examined using accelerated mortar bar tests. Furthermore, the reasons for the ASR reduction were investigated using microstructural analysis techniques, such as XRD and TG/DTG.
RESULTS : There was a difference in the compressive strength results according to the amount of GGBFS and FA substitution. In addition, the samples with GGBFS and FA exhibited relatively lower compressive strengths at 3 days, than OPC samples, but the compressive strength at 28 days was higher than that of the OPC samples. The samples with GGBFS and FA had higher compressive strength at 28 days than OPC samples, because the substituted GGBFS and FA induced pozzolanic reaction. Through XRD and TG/DTG analyses, various degrees of pozzolanic reaction occurring in the samples were examined, and a more active pozzolanic reaction occurred in the samples with FA than in the samples with GGBFS. Therefore, it appeared that the ASR reduction effect occurred because of the induced pozzolanic reaction.
CONCLUSIONS : GGBFS and FA substituting Portland cement indicated an ASR reduction effect, which was owing to the pozzolanic reaction. In addition, FA indicated a greater ASR reduction effect than GGBFS, which suggested that FA induced a more active pozzolanic reaction than GGBFS.