드론 활용 혈액 재고/배송계획 휴리스틱
This paper considers a joint problem for blood inventory planning at hospitals and blood delivery planning from blood centers to hospitals, in order to alleviate the blood service imbalance between big and small hospitals being occurred in practice. The joint problem is to determine delivery timing, delivery quantity, delivery means such as medical drones and legacy blood vehicles, and inventory level to minimize inventory and delivery costs while satisfying hospitals’ blood demand over a planning horizon. This problem is formulated as a mixed integer programming model by considering practical constraints such as blood lifespan and drone specification. To solve the problem, this paper employs a Lagrangian relaxation technique and suggests a time efficient Lagrangian heuristic algorithm. The performance of the suggested heuristic is evaluated by conducting computational experiments on randomly-generated problem instances, which are generated by mimicking the real data of Korean Red Cross in Seoul and other reliable sources. The results of computational experiments show that the suggested heuristic obtains near-optimal solutions in a shorter amount of time. In addition, we discuss the effect of changes in the length of blood lifespan, the number of planning periods, the number of hospitals, and drone specifications on the performance of the suggested Lagrangian heuristic.