논문 상세보기

Comparison of Measured and Calculated Carboxylation Rate, Electron Transfer Rate and Photosynthesis Rate Response to Different Light Intensity and Leaf Temperature in Semi-closed Greenhouse with Carbon Dioxide Fertilization for Tomato Cultivation KCI 등재

반밀폐형 온실 내에서 탄산가스 시비에 따른 광강도와 엽온에 반응한 토마토 잎의 최대 카복실화율, 전자전달율 및 광합성율 실측값과 모델링 방정식에 의한 예측값의 비교

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/410503
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
생물환경조절학회지 (Journal of Bio-Environment Control)
한국생물환경조절학회 (The Korean Society For Bio-Environment Control)
초록

본 연구는 반밀폐형 토마토 재배 온실에서 광합성율 극대화를 위한 적정 탄산가스 시비 농도를 구명하고자 광합성 모델을 이용하여 잎의 최대 카복실화율(Vcmax), 최대 전자전달속도(Jmax), 열파괴, 잎 호흡 등을 계산하고 실제 측정값과 비교하였다. 다양한 광도(PAR 200μmol·m -2 ·s -1 to 1500μmol·m -2 ·s -1 )와 온도(20°C to 35°C) 조건에서 CO2 농도에 대한 A-Ci curve는 광합성 측정 기기를 사용하여 측정하였고, 모델링 방정식으로 아레니우스 함수값 (Arrhenius function), 순광합성율(net CO2 assimilation, An), 열파괴(thermal breakdown), Rd(주간의 잎호흡)를 계산 하였다. 엽온이 30°C 이상으로 상승하였을 때 Jmax, An 및 thermal breakdown 예측치가 모두 감소하였고, 예측 Jmax의 가장 최고점은 엽온 30°C였으며 그 이상의 온도에서는 감소하였다. 생장점 아래 5번째 잎의 광합성율은 PAR 200- 400μmol·m -2 ·s -1 수준에서는 CO2 600ppm, PAR 600-800μmol·m -2 ·s -1 수준에서는 CO2 800ppm, PAR 1000μmol·m -2 ·s -1 수 준에서는 CO2 1000ppm, PAR 1200-1500μmol·m -2 ·s -1 수준에서는 CO2 1500ppm을 공급했을 때 포화점에 도달하였다. 앞으로 광합성 모델식을 활용하여 과채류 온실 재배 시 광합성을 높일 수 있는 탄산시비 농도를 추정할 수 있을 것으로 판단된다.

This study aimed to estimate the photosynthetic capacity of tomato plants grown in a semi-closed greenhouse using temperature response models of plant photosynthesis by calculating the ribulose 1,5-bisphosphate carboxylase/ oxygenase maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax), thermal breakdown (hightemperature inhibition), and leaf respiration to predict the optimal conditions of the CO2-controlled greenhouse, for maximizing the photosynthetic rate. Gas exchange measurements for the A-Ci curve response to CO2 level with different light intensities {PAR (Photosynthetically Active Radiation) 200μmol·m -2 ·s -1 to 1500μmol·m -2 ·s -1 } and leaf temperatures (20°C to 35°C) were conducted with a portable infrared gas analyzer system. Arrhenius function, net CO2 assimilation (An), thermal breakdown, and daylight leaf respiration (Rd) were also calculated using the modeling equation. Estimated Jmax, An, Arrhenius function value, and thermal breakdown decreased in response to increased leaf temperature (> 30°C), and the optimum leaf temperature for the estimated Jmax was 30°C. The CO2 saturation point of the fifth leaf from the apical region was reached at 600ppm for 200 and 400μmol·m -2 ·s -1 of PAR, at 800ppm for 600 and 800μmol·m -2 ·s -1 of PAR, at 1000ppm for 1000μmol of PAR, and at 1500ppm for 1200 and 1500μmol·m -2 ·s -1 of PAR levels. The results suggest that the optimal conditions of CO2 concentration can be determined, using the photosynthetic model equation, to improve the photosynthetic rates of fruit vegetables grown in greenhouses.

목차
Abstract.
Introduction
Materials and Methods
    1. Plant Growth Environments
    2. Measurements
    3. Comparison of Observed and Estimated Responses toDifferent Light Intensity and Temperature
Results and Discussion
Literature Cited
적 요.
저자
  • Eun-Young Choi(Department of Agricultural Science, Korea National Open University)
  • Young-Ae Jeong(Department of Agriculture and Life Science, Korea National Open University)
  • Seung-Hyun An(Department of Agricultural Science, Korea National Open University)
  • Dong-Cheol Jang(Department of Horticulture, College of Agriculture and Life Science, Kangwon National University)
  • Dae-Hyun Kim(Department of Biosystems Engineering, College of Agriculture and Life Science, Kangwon National University)
  • Dong-Soo Lee(Department of Agricultural Engineering, Energy and Environmental Engineering Division)
  • Jin-Kyung Kwon(Department of Agricultural Engineering, Energy and Environmental Engineering Division)
  • Young-Hoe Woo(Department of Horticulture Environment System, Korea National College of Agriculture and Fisheries) Corresponding author