Cr thin films with O added are deposited on sapphire substrate by DC sputtering and are nitrided in NH3 atmosphere between 300 and 900 oC for various times. X-ray diffraction results show that nitridation begins at 500 oC, forming CrN and Cr2N. Cr oxides of Cr2O3 are formed at 600 oC. And, at temperatures higher than 900 oC, the intermediate materials of Cr2N and Cr2O3 disappear and CrN is dominant. The atomic concentration ratios of Cr and O are 77% and 23%, respectively, over the entire thickness of as-deposited Cr thin film. In the sample nitrided at 600 oC, a CrN layer in which O is substituted with N is formed from the surface to 90 nm, and the concentrations of Cr and N in the layer are 60% and 40%, respectively. For this reason, CrN and Cr2N are distributed in the CrN region, where O is substituted with N by nitridation, and Cr oxynitrides are formed in the region below this. The nitridation process is controlled by inter-diffusion of O and N and the parabolic growth law, with activation energy of 0.69 eV.