논문 상세보기

위상 최적화를 위한 생산적 적대 신경망 기반 데이터 증강 기법 KCI 등재

GAN-based Data Augmentation methods for Topology Optimization

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/411218
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
한국공간구조학회지 (JOURNAL OF THE KOREAN ASSOCIATION FOR AND SPATIAL STRUCTURES)
한국공간구조학회 (Korean Association for Spatial Structures)
초록

In this paper, a GAN-based data augmentation method is proposed for topology optimization. In machine learning techniques, a total amount of dataset determines the accuracy and robustness of the trained neural network architectures, especially, supervised learning networks. Because the insufficient data tends to lead to overfitting or underfitting of the architectures, a data augmentation method is need to increase the amount of data for reducing overfitting when training a machine learning model. In this study, the Ganerative Adversarial Network (GAN) is used to augment the topology optimization dataset. The produced dataset has been compared with the original dataset.

목차
Abstract
1. 서론
2. 생산적 적대 신경망
    2.1 GAN
    2.2 WGAN
    2.3 DCGAN
    2.4 LSGAN
    2.5 CGAN
    2.6 매개변수
3. 위상 최적화 기법
4. 수치해석
    4.1 MBB
    4.2 데이터 생성
    4.2 생성 결과 비교
5. 결론
References
저자
  • 이승혜(세종대학교 건축공학과) | Lee Seunghye (Dept. of Architectural Engineering, Sejong University)
  • 이유진(세종대학교 건축공학과) | Lee Yujin (Dept. of Architectural Engineering, Sejong University)
  • 이기학(세종대학교 건축공학과) | Lee Kihak (Dept. of Architectural Engineering, Sejong University)
  • 이재홍(세종대학교 건축공학과) | Lee Jaehong (Dept. of Architectural Engineering, Sejong University) 교신저자