The purpose of this study was to introduce strategies and projects through which local government can play a role in mitigating damage to health when addressing the health challenge posed by radon (222Rn). We first compared and analyzed naturally occurring radioactive material (NORM) in the soil of relatively high (Geumsan) and low (Boryeong) concentration areas of indoor radon (222Rn) to understand the factors influencing concentrations. Mortality rates linked to lung cancer in the areas were also compared and analyzed in the study (T-test). We selected two key priority research studies and four key strategies based on status analysis and a review of domestic and international policy trends in relation to radon (222Rn). As a result of comparing the radium and thorium in the soil with indoor radon concentrations, Geumsan had a higher mean concentration of indoor radon (222Rn = 182.8 Bq/m3) and recorded a higher concentration of radium (226Ra = 48.4 Bq/kg) than Boryeong (226Ra = 43.9 Bq/kg). These findings show that Geumsan, which had a high concentration of radium (226Ra), revealed a high concentration of radon (222Rn), a radioactive decay material of radium (226Ra), demonstrating that the concentration of indoor radon (222Rn) can vary according to geological and soil characteristics. The age standardized mortality from lung cancer per 100,000 people was 31.6 in Geumsan and 27.3 in Boryeong (p < 0.05). These findings show that there is likely an association between the concentration of indoor radon (222Rn) and mortality from lung cancer. Two key priority research studies include a survey on factors influencing exposure to radon (222Rn) in local environments and preparation of a potential map of radon (222Rn). Four key strategies include “management of exposure factors regarding radon (222Rn),” “environmental health services provided to protect radon (222Rn) exposure,” “management of technical support measures for radon (222Rn),” and “disclosure regarding the risk of radon (222Rn) exposure (risk communication).”